Dellner Brakes four cylinder model SKD 4x125 disc brake is a direct acting, hydraulic pressure applied, spring released unit. The braking force achieved is directly proportional to the applied pressure.

The brake consists of two symmetrical halves that accommodate a standard disc thickness of 40mm. For use with thicker brake discs, the brakes can be supplied with spacers.

The tangential braking force is directly transmitted to the brake housing. As a result, the brake pistons are not subject to any radial forces, which contributes to longer brake life.

Brake pad wear is automatically compensated for with increased piston stroke.

<table>
<thead>
<tr>
<th>Braking force "F"</th>
<th>Max hydraulic pressure [bar]</th>
<th>Friction area per brake [cm²]</th>
<th>Max. working oil volume per brake [cm³]</th>
<th>Piston area per brake half [cm²]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>404200</td>
<td>200</td>
<td>1056</td>
<td>393</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>177</td>
</tr>
</tbody>
</table>

1) Calculated with an average frictional coefficient µ=0.42. Consideration has not been taken for external factors. 2) Oil volume required to engage the brake with fully worn friction pads.
The braking torque is calculated from the following formula:

\[
M_{\text{brake}} = \frac{q \times F_i \times p \times (D_s - H)}{2}
\]

- \(q \) = number of brakes
- \(F_i \) = braking force according to the table on page 1 [N]
- \(p \) = pressure [bar]
- \(D_s \) = brake disc diameter [m]
- \(H \) = brake pad height [m] (SKD 4x125: 0.140)

Options

- Support structure
- Proximity switches for on/off or pad wear indication.
- Return springs and screws

Suitable applications

Dellner Brakes model SKD 4x125 is suitable wherever service, stopping and holding brakes are needed, for example in the following types of applications:

- Propulsion propeller shafts
- Metal forming
- Wind mills
- Test rigs