Strength is of prime importance when it comes to optimising a braking system. We are only satisfied when the reality exactly matches what we have envisaged in our ambitious projections.

Arnd Krause, Engineering

Active yaw brake caliper

JHS-16

- Brake hydraulically applied
- Airgap between brake pad and disc up to 2 mm per side
- Special epoxy resin pads with GFK carrier plate
- Tight fitting between brake pad and caliper
- Drain ports for hydraulic oil leakage, prevents oil on brake disc, high safety
- Min. / Max. working temperature -40 / +60 °C
JHS-16

TYPE JHS-16

- **Contact force** F_c: 200 kN
- **Operating pressure** p (max): 160 bar
- **Piston area (per side)**: 127 cm²
- **Volume at 1 mm stroke (per side)**: 12.7 cm³
- **Temperature range**: -40 / +60 °C
- **Weight**: 60 kg
- **Pressure connection port**: G1/4
- **Drain connection port**: G1/4

BRAKE PAD

- **Pad area (each side)**: 157.1 cm²
- **Brake pad width**: 110 mm
- **Theor. friction coefficient**: 0.4 μ

BRAKE DISC

- **Brake disc ød2 min.**: 1000 mm
- **Disc thickness (standard)**: 30 mm

BRAKING TORQUE

Braking torque formula:

$$M_B = \frac{A x 2 x \mu}{a x D_B}$$

- A = Contact force [kN]
- p = Operating pressure [bar]
- F_c = Nominal braking force [kN]
- M_B = Braking torque [kNm]
- a = Number of calipers acting on the disc
- D_B = Brake disc diameter [m]

OPTIONS

- Complete piped supports for one or more calipers
- Hydraulic power unit
- Brake disc
- Brake pad with different material
- Brake pad wear indicator