This brake is a perfect example of how a premium product can be made out of an industry standard if you opt for the right components from the very beginning.

Holger Brink, Manufacturing

JHS-32

- Brake hydraulically applied
- Airgap between brake pad and disc up to 2 mm per side
- Special epoxy resin pads with GFK carrier plate
- Tight fitting between brake pad and caliper
- Drain ports for hydraulic oil leakage, prevents oil on brake disc, high safety
- Min. / Max. working temperature -40 / +60 °C
TYPE JHS-32

- Contact force $F_x = 542$ kN
- Operating pressure p (max) = 160 bar
- Piston area (per side) = 339 cm2
- Volume at 1 mm stroke (per side) = 33.9 cm3
- Weight = 185 kg
- Pressure connection port = G1/4
- Drain connection port = G1/4

BRAKE PAD
- Pad area (each side) = 285.1 cm2
- Brake pad width = 138 mm
- Theor. friction coefficient $\mu = 0.4$

BRAKE DISC
- Brake disc ϕ_d min. = 2000 mm
- Disc thickness (standard) = 40 mm

BRAKING TORQUE

Braking torque formula:

- $F_x = p \times 3.395$
- $F_n = F_x \times 2 \times \mu$
- $M_B = a \times F_n \times D_d / 2$

- $F_x = $ Contact force [kN]
- $p = $ Operating pressure [bar]
- $F_n = $ Nominal braking force [kN]
- $M_B = $ Braking torque [kNm]
- $a = $ Number of calipers acting on the disc
- $D_d = $ Brake disc diameter [m]

OPTIONS
- Complete piped supports for one more calipers
- Hydraulic power unit
- Brake disc
- Brake pad with different material
- Brake pad wear indicator

CHARTS

- Braking torque M_B [kNm] vs. Brake disc diameter D_d [mm]
- Clamping force F_c [kN] vs. Operating pressure p [bar]
- Nominal braking force F_n [kN] vs. Brake disk D_d [mm]