Customer-specific solutions – based on sound and proven components – are one of our principles evident in many areas of our company. The JHS-R240 series is a perfect example of this.

Margot Bucher, Office Administration

- Hydraulically operated
- Standard design
- Monitoring and display of end position "rotor locked/rotor unlocked"
- Low-maintenance design
The rotor lock is used for safety purposes during maintenance operations to stop the rotor mechanically. A bolt is being extended and engages the rotor lock disc. The respective end position of the lock bolt is monitored and a corresponding signal transmitted to the turbine control. This allows safe maintenance work.

TYPE JHS-R240

- **Weight**: 150 kg
- **Outer dimensions (in lock position)**: ø 320 x 495 mm
- **Max. lateral force Fₗ**: 4600 kN
- **Operating pressure p (max)**: 250 bar
- **Max. force fore stroke F₊**: 283 kN
- **Max. force back stroke F₋**: 187 kN
- **Piston diameter**: 120,0 mm
- **Piston area fore stroke**: 113,1 cm²
- **Piston area back stroke**: 74,6 cm²
- **Oil volume per 1 mm stroke**: 11,3 cm³
- **Oil volume per 75 mm stroke**: 848,2 cm³
- **Time for activation**: 35 s
- **Temperature range**: -40 / +60 °C
- **Pressure connection port**: 2 x G1/4

* different strokes on request

LOCK TORQUE

Lock torque formula:

\[M = a \times F_L \times D_{eff} / 2 \]

- \(M \) = Locking torque [kNm]
- \(a \) = Number of rotor locks acting on the disc
- \(F_L \) = Max. lateral force for the rotor lock [kN]
- \(D_{eff} \) = Effective pitch circle diameter [m]

OPTIONS

- With redundant lock switches as back up
- Position locking plate
- Hydraulically operated systems provided with check valves